Biofuels - Opportunities and Challenges

Low Carbon Transport Investor Event Carbon Trust

11th May 2009

Greg Archer Managing Director Low Carbon Vehicle Partnership

Low Carbon Vehicle Partnership

Accelerating a sustainable shift to low carbon vehicles and fuels in the UK

Stimulating opportunities for UK businesses

Outline

- The renewable fuel challenge
- Policy drivers
- Biofuel feedstocks and pathways
- Biofuel markets
- Costs
- Environmental benefits and impacts
- Legislative drivers
- Opportunities and challenges for investors

Renewable energy is a global economic driver

Finding the new driver of our economy is going to be critical.

There is no better potential driver that pervades all aspects of our economy than a new energy economy...

...assuming obviously that we have done enough to just stabilize the immediate economic situation.

Barack Obama, 2008

New Energy Finance 2009

3 policy drivers, 1 outcome increasing global biofuel demand

Principal biofuel policy drivers

Global biofuel demand is expected to reach 10-20% transport fuel demand by 2030

Source: McKinsey, BP Biofuels Analysis

Beyond 2020 IEA scenarios show an increasing penetration of renewable transport fuels to meet increasing demand

low carbon vehicle partnership

IEA 2008, Energy Technology Perspectives

There are multiple feedstocks and pathways through which to produce biofuels

E4tech 2007

Transesterification Oil crops and waste Biodiesel oils and fats Hydrogenation Fermentation Sugar crops Ethanol, Butanol Hydrolysis and Starch crops fermentation Lignocellulosic Fuel additives or hydrolysis and Woody energy substitutes fermentation crops, forestry residues. Lignocellulosic agricultural residues hydrolysis and FT diesel, chemical catalytic Methanol, DME, processing Methane Biodegradeable Gasification / municipal solid pyrolysis and waste chemical catalytic Hydrogen processing Sewage sludge Anaerobic digestion Biogas Wet wastes (farm and food wastes)

Commercially available, or 1st generation, routes are shaded blue, next generation routes are unshaded

Dark fermentation

Biofuel taxonomy is confusing

Multiple feedstocks enable a globally diverse market – but 5 crops dominate

2009 2008 2007

The EU is a major importer of biodiesel –

Brazil the major exporter of bioethanol

Bioethanol

2009 2008 2007

Global markets are expected to grow rapidly – notably for 2nd Generation Ethanol

Biofuels future share of transport fuel markets is highly dependent upon oil (and feedstock) prices but ultimately constrained by land availability

Crude oil price, \$ per barrel

Mckinsey 2007

Cost thresholds with oil vary widely – most advanced technologies requiring >\$100bbl

Oil price, \$/bbl	Fuels which are competitive above this oil price
	Brazilian sugar cane ethanol
60	US corn ethanol
	Biodiesel (jatropha – estimate)
70	Wheat ethanol – with gas CHP plant
	Biodiesel (rape, palm, soy)
	Wood ethanol (2020)
80	Wheat ethanol - electricity powered plant
90	Sugar beet ethanol
	Wheat ethanol – with straw CHP plant
	FT biodiesel (2020)
100	Biodiesel (current rapeseed oil prices)
110	Wood ethanol (2010)
120	FT biodiesel (2010)

Biofuel production costs vary widely and have become volatile with feedstock market price fluctuations

Feedstock and process	€/GJ	€/I	Feedstock price, €/tonne (dry)
Brazilian sugar cane ethanol	11.8	0.25	55
US Corn ethanol	11.8	0.25	62*
Wheat ethanol - gas CHP	14.2	0.30	100
Wheat ethanol - electricity powered plant	16.2	0.34	100
Wheat ethanol - straw CHP	17.5	0.37	100
Sugar beet ethanol	16.3	0.35	25
Wood ethanol (2010)	20.6	0.44	42
Wood ethanol (2020)	13.4	0.29	42
Biodiesel rapeseed oil	18.8	0.63	600
Biodiesel from palm oil	14.6	0.49	450
Biodiesel from soy oil	16.0	0.54	500
Biodiesel from jatropha oil	11.8	0.40	350
FT biodiesel (2010)	23.2	0.80	50
FT biodiesel (2020)	16.5	0.57	50

low carbon vehicle partnership

In the course of a year biofuels went from an environmental savour to pariah fuel

2006

We're harvesting a new crop of biofuels.

To hep meet the work is demand for networking transportation freels, BP is partnering with DuPont to develop an advanced generation of blockets. The first of these, biobutanoi can be blended in gasoline or co-blended with ethanol and gasoline and can be made using locally grown coops such as sugar beet, corn, and wheet. This new feel has the potential to lower overall greenhouse gas emissions while reducing dependence on oil and expanding apriorithme maxims.

low carbon vehicle partnership

0.000

beyond petroleum*

bp.com

Biofuels The fuel of the future

2007

There are better and worse ways of producing biofuels for crop-based feedstocks

British Sugar Wissingham Ethanol from sugar beat c60% GHG-saving Indirect effects possible

Matto Grosso – Brazil Deforestation for soy GHG-emissions

US Corn Minimal GHG-benefits Significant indirect effects

Biofuel GHG-savings vary widely between feedstocks & depending upon production processes

Land use change emits significant quantities of GHGs – leading to long payback times for plantations

	Assumed country of	GHG saving excluding the impacts of land-use change	Carbon payback (years)	
Fuel chain	origin	%	Grassland	Forest
Palm to biodiesel	Malaysia	46%	0 - 11	18 - 38
Soya to biodiesel	USA	33%	14 - 96	179 - 481
Sugarcane to bioethanol	Brazil	71%	3 - 10	15 - 39
Wheat to bioethanol	UK	28%	20 - 34	80 - 140

Gallagher Review 2008

UK operating the world's only national carbon and sustainability reporting scheme for biofuels

- Requirement of the UK Renewable Transport Fuels Obligation
- Encourages supply of more sustainable biofuels
 - Company performance published and compared against targets
- Increases awareness & understanding
- Practical but robust
- Non-discriminatory
- Developed through a multistakeholder process
 - Consultancy support from Ecofys / E4tech

Carbon and Sustainability Reporting Within the Renewable Transport Fuel Obligation

Technical Guidance Part One

Office of the Renewable Fuels Agency V1.2

August 2008

Widely varying company performance – ytd RFA pressure has encouraged improved performance

Targets met ytd (out of 3)	Fossil fuel company	Q2
3	ConocoPhillips Ltd	. 3
	Mabanaft UK Ltd	3
	BP Oil UK Ltd	2
	Greenergy Fuels Ltd	3
	Harvest Energy Ltd	2
	Ineos Refining Ltd	1
	Petroplus Refining Teesside Ltd	2
	Prax Petroleum Ltd	0
2	Shell UK Ltd	2
	Chevron Ltd	1
	Esso Petroleum Company Ltd	0
	Murco Petroleum Ltd	1
	Topaz Energy Ltd	0
1	Total UK Ltd	1

RFA 2009

Indirect effects on land use and food prices have emerged as a key concern and future legislative driver

The rural development dilemma

Wire speciforials conkertoors

"Biofuels can only contribute GHG savings if significant emissions from land-use change are avoided and appropriate production technologies employed" - Gallagher Review, 2008

- There is a future for a sustainable biofuels industry but:
- Feedstock production *must* avoid agricultural land that would otherwise be used for food production
 - Current policies will reduce biodiversity and may even cause greenhouse gas emissions
- The introduction of biofuels should be significantly slowed until adequate controls to address displacement effects are implemented and are demonstrated to be effective
- A slowdown and shift in biofuel feedstock production will reduce the impact of biofuels on food commodity prices that have a detrimental effect upon the poorest people

EU Renewable Energy Directive introduces mandatory environmental standards

- Target of 10% renewable energy in transport by 2020.Transposition deadline likely November 2010
- Biofuels must fulfil the sustainability criteria
 - minimum GHG savings of 35%, rising to 60% by 2018
 - not from land with high biodiversity, primary forest, carbon stocks, wetlands
 - information on measures taken for soil, water and air protection comitology
- Incentivises second generation biofuels
 - "wastes, residues, non-food cellulosic material, and ligno-cellulosic material shall be considered to be twice that made by other biofuels." (and electric vehicles)
- Complementary FEL Quality Directive (FQD) requires fuel suppliers to reduce the lifecycle greenhouse gas emissions of road transport fuels
- □ 6% reduction by 2020 relative to a baseline of the EU average figure in 2010.
- FQD and to RED 10% target broadly aligned (around 5% GHG reduction if all 10% RED met by biofuels – with 60% GHG-saving)

Global investment in bioethanol remains strong

Global investment

Biodiesel Bioethanol

New Energy Finance 2009

Over capacity and "splash and dash" imports are having significant impacts on the EU biodiesel industry

Observations for investors

- The period of high margins created by generous tax breaks is over
- Undeveloped tropical regions (with free-access to major markets) are attractive but have high risks and infrastructure challenges
- New technology will, in the longer term, significant reduce costs
 for some feedstocks and production regions
- Biofuels with better GHG-savings will become increasingly attractive with new legislation in the EU and US
- Risk can be managed through building value through complex supply chains

Key messages

- Biofuel demand is growing globally with several policy drivers and a strong legislative framework
- There are multiple feedstocks & pathways
- Costs are dominated by feedstock prices most are only viable at oil prices
 \$60bbl
- Advanced technologies have significant prospects for yield improvements and cost-reductions – in the medium term
- There are important direct environmental effects which EU legislation will seek to manage.
- Low carbon intensity fuels will be incentivised in the EU and US
- Indirect effects remains a major challenge ultimately biofuel production (excluding algae) will be constrained by land availability
- US / Brazilian investment in bioethanol remains strong biodiesel over capacity is a major issue
- □ There are significant risks but opportunities for investors

Any Questions?

The Low Carbon Vehicle Partnership +44 (0)20 3 178 7862

secretariat@lowcvp.org.uk

www.lowcvp.org.uk

